Riesz Bases of Root Vectors of Indefinite Sturm-Liouville Problems with Eigenparameter Dependent Boundary Conditions. II
نویسندگان
چکیده
منابع مشابه
Riesz Bases of Root Vectors of Indefinite Sturm-liouville Problems with Eigenparameter Dependent Boundary Conditions. Ii
We employ an operator theoretic setting established in [2]. Under Condition 2.1 below, a self-adjoint (actually quasi-uniformly positive [7]) operator A in the Krein space L2,r(−1, 1)⊕C 2 ∆ is associated with the eigenvalue problem (1.1), (1.2). Here ∆ is a 2 × 2 nonsingular Hermitean matrix which is determined by M and N; see Section 2 for details. We remark that the topology of this Krein spa...
متن کاملRiesz Bases of Root Vectors of Indefinite Sturm-Liouville Problems with Eigenparameter Dependent Boundary Conditions, I
We consider a regular indefinite Sturm-Liouville problem with two self-adjoint boundary conditions, one being affinely dependent on the eigen-parameter. We give sufficient conditions under which a basis of each root subspace for this Sturm-Liouville problem can be selected so that the union of all these bases constitutes a Riesz basis of a corresponding weighted Hilbert space.
متن کاملcomputing of eigenvalues of sturm-liouville problems with eigenparameter dependent boundary conditions
the purpose of this article is to use the classical sampling theorem, wks sampling theorem, to deriveapproximate values of the eigenvalues of the sturm-liouville problems with eigenparameter in the boundaryconditions. error analysis is used to give estimates of the associated error. higher order approximations are also drived, which lead to more complicated computations. we give some examples a...
متن کاملEigenparameter Dependent Inverse Sturm-Liouville Problems
Uniqueness of and numerical techniques for the inverse Sturm-Liouville problem with eigenparameter dependent boundary conditions will be discussed. We will use a Gel’fand-Levitan technique to show that the potential q in u00 þ qu 1⁄4 u, 0 < x < 1 uð0Þ 1⁄4 0, ða þ bÞuð1Þ 1⁄4 ðc þ d Þu0ð1Þ can be uniquely determined using spectral data. In the presence of finite spectral data, q can be reconstruc...
متن کاملEigenparameter Dependent Inverse Sturm-Liouville Problems
The author studies the inverse scattering problem for a boundary value problem of a generalized one dimensional Schrödinger type with a discontinuous coefficient and eigenparameter dependent boundary condition. The solutions of the considered eigenvalue equation is presented and its scattering function that satisfies some properties is induced. The discrete spectrum is studied and the resolvent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Equations and Operator Theory
سال: 2009
ISSN: 0378-620X,1420-8989
DOI: 10.1007/s00020-009-1659-0